SHRI RAMSWAROOP MEMORIAL UNIVERSITY End Semester Examination (2021-22)-Odd Semester

M.Sc.(Mathematics)-I Year (I SEM)

Course Name:Algebra-I	Code: MMA1001
Time: 02 Hours	Max Marks: 60

University Roll No.															
(To be filled by the Student)															

Note: Please read instructions carefully:

- a) The question paper has 03 sections and it is compulsory to attempt all sections.
- b) All questions of Section A are compulsory; questions in Section B and C contain choice.

Section A: Very Short Answer Type Questions Attempt all the questions.				Marks (10)
1.	Define homomorphism with example.	BL1	CLO1	02
2.	Define algebraic extension of field. What is the degree of $\sqrt{2}\sqrt{3}$ over Q.	BL1	CLO4	02
3.	A group G is nilpotent and iff $\gamma_{n+1}(G) = \{1\}$ for some integer $n \ge 0$.	BL2	CLO2	02
4.	Show that the polynomial $f(x) = x^4 + x^3 + x^2 + x + 1$ is irreducible over Q	BL2	CLO3	02
5.	State Zassenhaus Lemma.	BL2	CLO2	02
	ion B: Short Answer Type Questions mpt any 03 out of 06 questions.	BL	CLO	Marks (30)
1.	If <i>H</i> and <i>K</i> are normal subgroups of <i>G</i> , then prove that $HK = \{hk: h \in H, k \in K\}$ is a normal subgroup of <i>G</i> .	BL3	CLO1	10
2.	State and prove Scherier's theorem.	BL1	CLO2	10
3.	If N is a normal subgroup of G such that N and G/N are solvable then show that G is also solvable.	BL2	CLO2	10
4.	If L is an algebraic extension of K and if K is an algebraic extension of F , then show that L is an algebraic extension of F .	BL3	CLO4	10
5.	Prove that a group of order 56 is not simple.	BL1	CLO1	10
6.	Prove that for $r \in R, m \in M$ then,	BL1	CLO5	10
	0. m = 0.			
	ion C: Long Answer Type Questions: mpt any 01 out of 04 questions.	BL	CLO	Marks (20)
1.	State and prove Sylow's third Theorem.	BL1	CLO2	20
2.	Define central series. Show that a normal series $G = G_0 \ge G_1 \ge G_2 \ge$ $\ge G_n = \{1\}$ is a central series if and only if $[G_i, G] \le G_{i+1}$.	BL2	CLO2	20
3.	Prove that an element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite extension of F .	BL2	CLO3	20

4.	Let $ar{G}$ be the group of non-zero real numbers under multiplication and	BL3	CLO2	20
	$G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in Randad - bc \neq 0 \right\}$ be a group under matrix			
	multiplication. Exhibit a homomorphism of G on to \overline{G} .			
